
FPGate: The Last Building Block For A Practical CFI Solution

Tao Wei1,2, Chao Zhang2, Zhaofeng Chen2, Lei Duan2,

Laszlo Szekeres1, Stephen McCamant1, Dawn Song1

1UC Berkeley, EECS
2Beijing Key Laboratory of Internet Security Technology(LiST), Peking University

April 1, 2012

Abstract

We propose and evaluate a new protection mech-
anism for indirect call and jump instructions in
binaries, which we call FPGate. FPGate stop-
s attacks targeting function pointers by limiting
indirect transfers to only those targets that are le-
gal in the original program. When deployed to-
gether with other existing lightweight protection-
s, FPGate can provide a level of protection com-
parable to CFI (Control Flow Integrity), stopping
almost all control-flow hijacking attacks including
ROP. We observe that with the wide deploymen-
t of ASLR, Windows/x86 PE executables contain
enough information in relocation tables which FP-
Gate can use to find all legal jump targets reliably,
without source code or symbol information. FP-
Gate can be applied to a single module at a time,
as well as the whole system, and it provides a clear-
ly specified protection scheme so that it can be
checked separatley if the whole binary is protect-
ed; we provide an example binary with a function
pointer vulnerability which shows the protection.
We evaluate our prototype implementation on the
SPECint2006 suite: FPGate protects applications
as large as the 3MB GCC completely automatical-
ly, and has an average time overhead below 0.4%.

1 Introduction

Many binary-level protection mechanisms includ-
ing DEP, ASLR, GS/SSP, and Safe-SEH have
gained wide adoption, and they are making it
more difficult for attackers to exploit vulnerabil-
ities. But even together these protections have
significant gaps through which attack is still pos-
sible. In particular the current state of practice
does not adequately protect function pointers and
other values used in general indirect call and jump
instructions. For instance many recent exploits a-

gainst use-after-free vulnerabilities work by over-
writing class vtables to turn benign method calls
into jumps to shellcode, perhaps with intermediate
use of ROP.

We propose a new protection method called FP-
Gate to limit indirect call and jump instructions to
only those targets that are legal in the original pro-
gram, preventing these function-pointer misuse at-
tacks. We build FPGate as a purely binary trans-
formation. Our system finds all indirect transfer
instructions and the set of valid targets based just
on information available in a stripped binary, pri-
marily relocation tables used for ASLR. We then
rewrite the binary to add checks before each indi-
rect call and jump. The added checks and support-
ing information require just a few additional bytes
per jump and target, typically less than 100 kilo-
bytes even for a large application. The execution
time overhead is extreamly low, less than 0.4% on
standard benchmarks.

Beyond its abilities on its own, FPGate is a
major step towards making strong Control-Flow
Integrity (CFI) guarantees available in practice.
Currently deployed mechanisms such as ASLR and
stack cookies provide what initially sound like
broad protections against standard kinds of at-
tack, but because they are designed in a reactive
style, they can often be bypassed by variations and
more complex approaches. Attacker countermea-
sures that originally sounded impossible become all
too easy, and sometimes even automatable, over
time. A better long term approach is to focus on
what we want to protect, and then design protec-
tion measures accordingly.

Thus the natural protection against control-flow
hijacking attacks is Control-Flow Integrity [1]: a
guarantee that all control-flow transfers in a pro-
gram will be the ones intended in the original
program (i.e., those represented in the compiler’s
control-flow graph). CFI defeats a broad range of
techniques for shellcode injection, including sophis-

1

ticated return-oriented programming (ROP). CFI
provides a guarantee that is strong, and can be
easily reasoned about formally; this also makes it
useful as a building block for other kinds of protec-
tion [4]. The world would be a much more secure
place if every binary was protected with CFI.

Unfortunately, despite its long history (the o-
riginal paper proposing it was in 2005), CFI has
not seen wide industrial adoption. CFI may suffer
from a perception of inefficiency: the original ap-
proach had overheads as high as 40% [1], though
recent systems are significantly improved. Anoth-
er limitation is that CFI systems usually require
recompiling all of a program from source code. A
recent system [3] replaces this requirement with
disassembly via IDA Pro, but when used to on
Windows/x86 binaries IDA Pro is heuristic and in-
complete.

FPGate fills most of the gap between existing
lightweight protection mechanisms on one hand,
and CFI on the other. Combining FPGate with ro-
bust protection of return addresses as we describe
in section 5.2 is a sweet spot for security and us-
ability. This approach provides protection for in-
direct calls and jumps that is almost as strong as
classic CFI (omitting sub-classification of indirect
targets), and protection for return addresses that
is stronger. At the same time, it has low overhead
and can be applied directly to a binary.

In summary, our FPGate protection approach
has the following key advantages:

� Robust protection: prevents misuse of
function-pointers and other indirect calls and
jumps

� Low overhead: under 0.4% on SPECint2006

� Binary only: no source code or debugging
symbols required

� Progressive deployment: protected and unpro-
tected code can inter-operate

� Clear guarantee: based on what we want to
protect, not particular attack mechanisms

The remainder of this paper is organized as fol-
lows: We give an overview of our approach in sec-
tion 2. We describe the design and implementation
of our system in section 3. Section 4 gives our e-
valuation of performance and protection. Section 5
discusses security topics including remaining possi-
ble attacks, and proposed approaches for CFI-level
protection. Finally section 6 concludes.

2 Approach Overview

The goal of our FPGate protection mechanism is
to ensure that indirect call and jump instructions
(collectively “indirect transfer instructions”) only
jump to targets that are known to be legal. Our
general approach is to find where function point-
ers are created and used in the program, replace
the original values of function pointers with en-
coded values, and modify the instructions that use
function pointers to decode the values before jump-
ing. Within this general approach there are two
key choices: how to find indirect transfer instruc-
tions and their potential targets, and what encod-
ing/decoding scheme to use. We make the follow-
ing choices:

(1) We use binary analysis to identify all indirect
call/jmp instructions and their potential tar-
gets.

Section 2.1 explains how we can perform this
identification using only information present
in binaries.

(2) We replace function pointers with pointers to
code stubs which in turn include a jump to
the original target.

Section 2.2 describes this encoding and the
corresponding decoding (checking) process.

Existing mechanisms, such as W⊕X, Safe-SEH
and GS/SSP, have protected return instruction-
s and exception handlers, but no commonly-used
mechanism systematically protects indirect cal-
l and jump instructions. Adding protection for
indirect calls and jumps is the last major step to-
wards enforcing that a program may only execute
along the paths in its CFG, i.e, to enforce CFI.

We describe more details of our approach in the
next subsections.

We use the terms “indirect code entry” and
“function pointer” interchangeably with “indirect
call/jump target” in the following sections.

2.1 Identify indirect call/jump tar-
gets

In general, it is challenging to disassemble an x86
PE file correctly, because x86 is a CISC platfor-
m. However, we can take advantage of the fact
that ASLR is widely adopted in Windows/x86 ex-
ecutables, particularly those whose developers care
about security. This results in the following impor-
tant deduction:

(1) ASLR-protected executables must have relo-
cation tables (see section 3.1 background on
relocation tables).

2

Further, we make just two more assumptions:

(2) Compilers can freely choose a starting address
for a function or a segment.

(3) Most programmers get the addresses of func-
tions only through ways provided by high lev-
el languages. Programs written in high-level
languages and even most inline assembly code
complies with this rule. Malicious/encrypted
code may violate this rule, which is out of the
scope of this work.

These rules hold for most binaries generated by
modern compilers today. We call such binaries
“normal” PE files in this paper.

Based on these rules, plus the fact that all in-
direct control transfers in x86 must use absolute
addresses, we can deduce that:

(4) All indirect code entries must be reachable
from relocation tables or export tables.

We make the observation that due to rule (4), we
can cover all possible instructions in a normal PE
file by disassembling it recursively from all possible
indirect code entries.

DEP is also an important security technology
adopted widely today. According to the DEP pol-
icy, a compiler should respect the following rule:

(5) In DEP-protected executables, application
level data should not exist in code sections.
Compilers only put instructions and several
types of control tables (such as jump tables
for switch statements) into code sections.

Combined with other policies described in sec-
tion 3.2, we will take an approach that can disas-
semble a normal PE file complying with rule (5)
correctly and automatically. For binaries not re-
specting rule (5), we can still identify most code
and data correctly and tag unidentified parts ex-
plicitly for manual review. These remaining parts
are usually small even for large binaries, and can
be easily reviewed.

As we can disassemble a normal PE file correct-
ly, we can easily identify all valid control-transfer
instructions, and all of the target instructions they
might legally jump to.

2.2 Protecting function pointers

After finding all indirect control-transfer instruc-
tions and possible targets, we can replace all indi-
rect call/jump target addresses with encoded val-
ues. These encoded addresses should satisfy three
conditions:

� Their legality can be checked quickly;

� They can be used to invoke the original func-
tions quickly;

� For maximum compatibility, their numeric
values should be similar to the numeric values
of non-encoded addresses. For instance, since
function entry points are typically aligned,
encoded address values should be similarly
aligned, in case the program checks this.

Many encoding approaches are possible; the
Windows API even provides a pair of functions
EncodePointer/DecodePointer with a similar pur-
pose. However most encoding methods give an
encoded value that cannot be used as a function
pointer by unmodified code.

.text

.reloc

0x4011A4

0x31A4

0x401120

fp1

mov eax, offset fp1

call

0x401000

call eax

.text

.reloc

0x4011A4

0x31A4

0x404010

fp1

call*

0x401000

.stub

jmp fp1

test al,0x0f
jnz err

cmp [eax-4], prolog
jnz err
call eax

(a) Original PE
file

(b) Hardened by
FPGate

prolog

mov eax, offset
stub_of_fp1

Figure 1: Reloc table & fp encoding mechanism

We propose an encoding scheme similar to the
method used to mark legal jump targets in the
classic CFI approach [1]. Each possible indirect
jump target is represented by a 16-byte-aligned s-
tub function. Valid stub functions are identified by
the inclusion of a fixed 4-byte constant sequence we
call the “prolog.” Following the identifying prolog
sequence, the stub has a jump to the original target
address. We choose the value of the prolog to be
a 4-byte sequence that appears rarely or not at all
in the code section otherwise. We can use binary
rewriting to ensure that the value is unique.

A key advantage of this approach is that if the
stub function is executed directly, as it would be by
an unprotected indirect call instruction, it still has
the correct behavior. As described in more detail
in section 3.3.2, this allows us to apply FPGate to
just a subset of the modules in a program.

3

2.3 From existing protections to C-
FI enforcement

On modern x86 platforms, attackers can use only
the following four methods to violate control-flow
integrity in user space:

(a) Modify instructions directly.

(b) Modify return addresses.

(c) Modify system exception handlers.

(d) Modify indirect call/jmp targets, including
function pointers.

There are relative mature mechanisms to protect
against the first three attacks.

In order to stop attack (a), W⊕X is a policy
most of modern platforms support and obey. It
makes sure that every page in a process’ address
space is either writable or executable, but not both
simultaneously.

For attack (b), technologies such as GS cook-
ie protection or Stack Smashing Protector (SSP)
are adopted by most modern compilers. When
applied only to vulnerable functions, their over-
heads (based on our benchmarking) are about from
0.14%(gcc) to 1.78%(vc 2010). When applied to all
functions, their overheads are about from 2.38%(l-
lvm) to 2.77%(gcc). There are also other technolo-
gies proposed for similar purposes but more secure,
such as shadow stacks. Their overheads are less
than 5% too.

For attack (c), there are methods such as Safe-
SEH which can make sure that only registered ex-
ception handler can be invoked. Most application
level exception mechanisms are implemented by in-
direct jump instructions, so attacks against them
belong to type (d).

Only attack (d) has no systematic defense in cur-
rent systems. There are EncodePointer/Decode-
Pointer APIs provided by the system, but they
must be used manually and cannot handle vtables
and many other situations.

If we can protect indirect call/jump instruction-
s’ targets from arbitrary modifications, we can en-
force CFI or quasi-CFI combined with existing pro-
tection methods. We have designed FPGate to
play this role of protecting against attack (d); we
will return to the discussion of modes of combina-
tion in section 5.2

3 System Design & Imple-
mentation

FPGate includes two major modules: BitCover &
BitRewrite. BitCover disassembles a given PE file,

and tags all potential indirect control-transfer tar-
gets. BitRewrite rewrites the PE file with indirect
transfer targets hardening mechanisms. The archi-
tecture of FPGate is shown in Fig.2.

For normal PE files which respect rule (5) de-
scribed in section 2.1, FPGate can harden them
automatically. For other PE files, FPGate could
generate suspect lists for manual review.

FPGate

BitCover
Original PE

File BitRewrite
Hardened

PE file
Disasm info

Figure 2: Architecture of FPGate

Relocation table is the important basis for this
proposal, but it has some confusing concepts. We
clarify these concepts in the first subsection. After
that we describe the algorithms of BitCover and
BitRewrite.

3.1 Background:Relocation table

Relocation mechanism of the PE format relates to
several addresses. We define them as the following:

� Reloc item: exists in the .reloc table. Each
item is 2-bytes long, where the highest 4 bits
describe the relocation type and the lower 12
bits are used to compute the reloc slot ;

� Reloc slot: address of the memory which
contains a reloc entry, must be 4-bytes long
in 32bit systems;

� Reloc entry: content which needs to be up-
dated when loaded by the system loader, it
is usually the address of functions or global
variables etc.

For example, in Fig.1 (a), a reloc item existed
in the relocation table (i.e. the .reloc section) is
0x31A4, where, its type is 3 and means this reloc
item is a normal one.

The reloc slot represented by this item is
0x4011A4, it is computed through 0x400000 +
0x1000+0x1A4, where, 0x400000 is the image base
of the PE file, 0x1000 is the relocatable page’s Rel-
ative Virtual Address (RVA) and it is stored in the
relocation table too, 0x14A is the lower 12 bits of
the reloc item and it means the reloc slot’s offset
in the relocatable page.

The actual content stored in this reloc slot is
0x401120, i.e. the reloc entry, it is the address of a
function fp1, which will be updated when loading.

4

3.2 BitCover

The workflow of BitCover is shown in Fig.3. There
are two phases in BitCover.

Validate
code entries

PE file

Indentify control
tables

Tag
reliable

code
entries

Propagate
valid
code

entries

Phase 1

code entry
candidates

Known control
tables

Other unknown
data

Phase 2

Valid code
entries

Valid control
tables

Suspect code
entries

Input Output

Figure 3: Workflow of BitCover

In the first phase, BitCover checks all possible
code entry points to determine if they are valid. It
also identifies known control tables based on their
special characteristics.

For a given address in the code section (i.e. a
possible program counter (PC) value), BitCover
uses the following rules to determine whether it
is a valid instruction:

� No invalid instruction permitted

� No instruction overlaps with another

� A valid instruction must lead to other valid
instructions

� The set of code reachable from an entry point
should stop at a return, a terminating function
or an indirect jump to an unknown target

� All addresses’ size must be valid

� If an instruction contains a .reloc pointee, the
pointee must be a valid immediate value or
offset.

� All absolute addresses in code must be relo-
cated, except special system values

� IO/interrupt instructions are permitted only
in specified situations

� Only specified segment registers can be used
in code

(A terminating function is one that is not expect-
ed to return to its caller, such as exit or abort in
C).

Due to rule (4) in section 2.1, all indirect code
entries must be in reloc entries or in the export ta-
ble. For each code entry in these tables, BitCover
disassembles from it recursively. If it meets an in-
valid instruction during the recursive exploration
process, it invalidates the entry. During the pro-
cess, BitCover needs also to propagate information
about terminating functions in order to stop prop-
erly.

For binaries respecting rule (5) in section 2.1, a
candidate entry must be a valid code entry or an
entry for known control table. So BitCover can
disassemble the whole program automatically.

But for binaries not obeying rule (5), BitCover
will find unknown data in their code sections. In
this case, BitCover needs to tag such “suspect”
parts for manual review. In order to do that, we
need to filter suspect parts from reliable parts in
phase 2.

We observe a phenomenon that those entries be-
tween data and code are most prone to be identified
wrongly. At phase 2, we first tag code entries not
behind unknown data as valid code entries. Then
we tag all its callees as valid. In such a way, we
propagate the validity of code entries. Finally we
tag code entries left as suspect for manual review.

For the convenience of BitRewrite, BitCover also
indentifies padding areas and other entries.

3.3 BitRewrite

In this paper, we call all instructions or data
which could generate or represent the address of an
indirect call/jmp target function pointer sources.
We call all indirect call/jmp instructions function
pointer sinks. As this terminology suggests, func-
tion pointer values are introduced into the pro-
gram’s data at function pointer sources. They may
then be stored in other variables and data struc-
tures until eventually they reach a function pointer
sink when they are used to choose the next code
to execute.

With information provided by BitCover, Bi-
tRewrite tries to encode each potential indirect
transfer target at each source, and then decode the
function pointers at each sink.

Several encoding and decoding schemes exist.
Here, we present a scheme which has good com-
patibility and security. Each valid function pointer
value is represented by a small new piece of code
which we call a trampoline stub. The trampoline
stub is in fact valid code which if executed directly
will jump to the original jump target. But the stub
also contains an additional identifier which allows
the inserted code to verify that it is a legal encoded
target.

More specifically, as shown in Fig. 1,

(a) Each function pointer source, such as the in-
struction mov eax, offset fp1 in Fig. 1(a), is
encoded to mov eax, offset stub of fp1, where,
stub of fp1 is the address of a trampoline stub.

(b) Each function pointer sink, such as the in-
struction call eax, is replaced with a new code
block which decodes the function pointer it

5

uses. In our scheme, the decoding is to vali-
date the transfer target and then call/jump to
the transfer target, i.e. the encoded function
pointer or the address of a trampoline stub,
and then jumps to the original target func-
tion.

Each trampoline stub is 16 bytes long and start-
s at a 16-byte aligned address. At the beginning
of the trampoline (offset 0) is an instruction that
implements the jump to the original target. Four
bytes before the beginning, or equivalently at the
end of the previous trampoline (offset −4 or 12),
there is a special 4-byte identifier we call the pro-
log. The prolog is what identifies the trampoline as
valid; its value is chosen so that it does not occur
elsewhere in the code segment.

In a real executable, there are different types of
function pointer sources and sinks. The rest of
this section describes in more detail how FPGate
handles each kind of source and sink.

3.3.1 Encode function pointer sources

According to the assumption (3) in section 2.1, we
can deduce that function pointers sources include
such categories:

(a) Hard-coded function pointers in the exe-
cutable file, such as those stored in the vtable
(belonging a C++ classes with virtual meth-
ods) and those stored in global variables. The
Following function pointers do not need to be
encoded:

� Entries in switch statement jump table.
They are usually stored in the code sec-
tion and cannot be altered by attackers.

� System exception handlers. They are di-
rectly used by the system and protected
by Safe-SEH. So they should not be en-
coded.

� Function pointers directly used in cal-
l/jmp instructions such as call fp.

(b) Entries in the import table. These function
pointers will be updated when loading. If an
import function is only directly used in cal-
l/jmp instructions, such as call [imp slot], it
does not need to be encoded too.

(c) Function pointers generated at runtime by
GetProcAddress().

(d) Function pointers generated at runtime by
setjmp().

In our scheme, each function pointer is replaced
with a new pointer, i.e. a trampoline slot, which
holds the address of a trampoline stub.

Listing 1: Encode sources: hard-coded fp

1 // o r i g i n a l : r e l o c s l o t : fp
2 // Hardened : r e l o c s l o t : tramp stub
3 // tramp stub : 0xE9 4 bytes−r e l 3 2 (jmp r e l 3 2

)
4 // 7 bytes−0xCC 4 bytes−

PrologForNext

For function pointers of type (a), as shown in
List. 1, each reloc slot which holds a function point-
er is filled with the address of a trampoline stub.
The corresponding stub jumps to the original func-
tion pointer (rel32 is the offset from the stub to the
original fp). Note that the last 4 bytes is the pro-
log for the next stub, which will be checked when
decoding.

Listing 2: Encode sources: import fp

1 // o r i g i n a l : r e l o c s l o t : imp s l o t : imp fp
2 // Hardened : r e l o c s l o t : wrap s lo t :

tramp stub
3 // tramp stub : 0x25FF 4 bytes−imp s l o t (jmp

[imp s l o t])
4 // 6 bytes−0xCC 4 bytes−

PrologForNext

Function pointers of kind (b), they are updated
when loading. So they cannot be encoded as for
(a), since the encoded value will be overwritten by
the loader. Instead, we use the fact that this kind
of function pointer must be referenced through the
addresses (called import slots) of import entries in
the import table.

As shown in List. 2, each reloc slot which holds a
import slot is filled with the address (called wrap-
per slot) of one wrapper entry. The wrapper slot
is in a read-only section, its content is the address
of one trampoline stub. The corresponding stub
jumps to the original import function, e.g. jmp
[imp slot].

Listing 3: Encode sources: return by GetProcAd-
dress()

1 // in new GetProcAddr :
2 // c a l l o r i g i n a l GetProcAddress
3 // mov o r i g i n a l re turn value to

preserved r e t s l o t
4 // return address o f r e t s l o t ’ s

a s s o c i a t e d trmp stub
5 // tramp stub : 0x25FF 4 bytes−r e t s l o t (jmp

[r e t s l o t])
6 // 6 bytes−0xCC 4 bytes−

PrologForNext
7 new GetProcAddr = gen or get GetProcAddr ()
8 // o r i g i n a l : r e l o c s l o t : imp s l o t :

imp GetProcAddress
9 // hardened : r e l o c s l o t : wrap s lo t :

new GetProcAddr
10 encode imp s lo t (r e l o c s l o t , imp s l o t)

For function pointers of kind (c), they are gen-
erated at runtime. If FPGate is applied onto the
whole system, especially onto the executable itself
and all external libraries it depends on, the return
value of GetProcAddress() is already an encode
function pointer, there is no need to encode it again
here.

6

But, FPGate cannot be adopted by the industry
immediately, e.g. kernel dlls in Windows 7 are not
allowed to be replaced by user applications. As a
result, currently, we cannot assume that the return
value of GetProcAddress() is encoded.

In order to handle this issue, a wrapper function
(denoted as wrap getproc) for GetProcAddress is
generated as shown in line 6 in List. 3. It moves the
runtime-generated function pointer to a preserved
return slot, and then returns the address of the
associated preserved trampoline stub. Moreover,
GetProcAddress itself is an import function, so it
needs to be encoded as (b), as shown in line 9.

The preserved return slot can be written by the
wrapper function wrap getproc to the store func-
tion pointer returned at runtime. However these
return slots should be protected from being altered
by attackers, so we take the following approach.
To start, all return slots are set read-only. When
wrap getproc tries to write to a return slot, it set-
s the corresponding memory page to be writable.
After it writes the returned function pointer to this
slot, the memory page is set back to be read-only.
In such a way, the attacker cannot hijack the return
slots to control the program’s behavior. Due to the
contest deadline limitation, this protection has not
been deployed yet in our prototype. But GetP-
rocAddress is not used in the performance critical
paths for normal programs, so it does not influence
the performance much.

Listing 4: Encode sources: generated by setjmp()

1 // in new setjmp :
2 // c a l l o r i g i n a l setjmp (jmp buf)
3 // encode the func t i on po in t e r f i e l d o f

jmp buf
4 new setjmp = gen o r ge t s e t jmp ()

Function pointers of kind (d) are generated at
runtime as well. setjmp() retrieves its caller’s re-
turn address from the stack (an unencoded func-
tion pointer) and saves it into the jmp buf struc-
ture (setjmp’s argument), and finally this func-
tion pointer (i.e. return address) will be used by
longjmp(). Similar to (c), we generate a wrapper
function for setjmp(), as shown in List. 4. This
wrapper calls original setjmp() and then encodes
the function pointer in the jmp buf.

setjmp() is called limited in a just a few locations
in the program. All these call sites can be identified
offline. As a result, the function pointers generat-
ed at runtime by setjmp (i.e. all call sites’ next
instructions’ addresses) can be identified. For each
candidate function pointer fp generated by setjmp,
a trampoline stub is preserved. And the map re-
lationship from fp to stub is stored in a read-only
memory.

The wrapper for setjmp encodes the function
pointer of jmp buf as follows: 1) it looks up the

memory which stores the map relationship, and
then 2) gets the address of the function pointer’s
associated trampoline stub, and finally 3) this s-
tub address is stored back to the function pointer.
As setjmp() is seldom used nowadays, this is not
included in our current prototype.

3.3.2 Decode function pointer sinks

Function pointers’ sinks include:

(a) Indirect call/jmp instructions in the exe-
cutable file itself. Indirect instructions that
use function pointers or import slots directly,
such as call [imp slot], do not need decoding.

(b) The callback arguments of some import-
ed functions, such as the first argument of
onexit() function in MSVCR100.dll.

For function pointer sinks of kind (a), as shown
in List. 5, the original indirect control-transfer in-
struction is replaced with a jmp instruction. The
target of the jump is an instrumented code block
either in the padding area of the original executable
image or in a new created section.

The instrumented code block validates the orig-
inal jump target to ensure that it was a valid en-
coded address. It checks whether the address is 16-
byte aligned, and whether the 4 bytes before the
target (i.e. prev stub’s last 4 bytes) is the prede-
fined prolog. If the validation passes, the control
flow transfers to the encoded target (i.e. the in-
strumented trampoline stub). Otherwise, it jumps
to a predefined error handler and then exits safely.

Listing 5: Decode sinks: indirect instructions

1 // o r i g i n a l : c a l l tg t
2 // hardened : jmp new addr
3 // new addr :
4 // mov eax , tg t
5 // t e s t al , 0 x0f
6 // jnz e r r o r h a n d l e r
7 // cmp [eax −4] , pro log
8 // jne e r r o r h a n d l e r
9 // jmp eax

It is worth noting that, the predefined prolog is
chosen carefully, i.e. 0xCC02EBCC in our proto-
type implementation. Besides, each instrumented
prolog’s address is in the form of 16 ∗ x − 4, i.e.
its end is 16 bytes aligned. By comparison, such
byte sequences rarely occur in original executables
(much less 16-byte aligned), because 0xCC is a spe-
cial breakpoint instruction int 3. In the worst case,
there is a prolog whose end is 16 bytes aligned in
the original executable (which could occur in the-
ory occur as operand of an instruction), we can
rewrite this instruction so that it no longer match-
es the prolog or is differently aligned.

Thus this uniqueness lets us conclude that
attackers cannot find a faked trampoline stub in

7

original code sections to forge a indirect call/jmp’s
target.

For function pointer sinks of kind (b), encoded
function pointers flow into external modules. As
discussed earlier, if FPGate is applied onto the w-
hole system, there is no need to consider how these
function pointers flow into external modules.

But currently, FPGate can only be applied on a
subset of the system, so function pointers should
be decoded before flowing into external modules
those not hardened by FPGate.

Interoperability Unlike other potential en-
code/decode schemes, the one we present here has
an advantage on compatibility. That is, the en-
coded function pointers do not need to be decoded
before flowing into external modules. Because the
encoded function pointers are addresses of instru-
mented trampoline code, i.e. they are valid func-
tion pointers and can flow into external modules
safely. In other word, function pointers which are
encoded without decoding work fine everywhere.
As a result, FPGate is a gradual hardening scheme.
It is compatible with existing software.

Note that the converse is not true. A function
pointer that is not encoded (e.g. one supplied by
attacker) but decoded by FPGate will be caught
at runtime. Catching such cases is the motivation
for using FPGate in the first place. In the case
where protected and unprotected code are mixed,
this behavior could cause a false positive if a func-
tion pointer were passed from unprotected code to
protected code, but this seldom happens in normal
program hardening situations.

4 Evaluation

4.1 Compatibility

As shown earlier, BitRewrite modifies function
pointers and rewrites indirect call and jmp instruc-
tions in the executable. If a functions pointer is
missed by the rewriter and thus doesn’t get encod-
ed correctly, the program will fail at the decode
points.

In order to evaluate FPGate’s compatibility with
existing real world software, and show that the
rewriting produces semantically equivalent code,
we tested it with the 13 applications included in
the SPEC-CPU2006-INT benchmark test suite [2].

First, all the 13 applications were compiled using
Microsoft Visual Studio 2010. We made release
builds with the /GS (Buffer Security Check) flag
on, but only 12 of them were built successfully. The
application libquantum fails because MSVC does
not support the C99 feature, e.g. type complex.

Secondly, we used FPGate to automatically
rewrite all these 12 successfully built applications.
We only modified the executable image itself. We
left all external modules (e.g. DLLs) intact.

Thirdly, we ran the 12 hardened applications us-
ing the test harness of the SPEC2006 benchmark
suite and checked their results. All the rewritten
programs ran succesfully, meaning that all test out-
put was that same as the original, unmodified ap-
plications’. SPEC2006 uses a large test data set,
so this is a good indication that the applications
remained semantically equivalent. In other words,
FPGate can work compatibly with existing soft-
ware.

4.2 Performance

In order to evaluate the overhead brought by FP-
Gate, we also compared the running time of orig-
inal and the rewritten applications in the SPEC-
CPU2006-INT test suite. We conducted the ex-
periment on a Windows 7 32bit system, with the
Intel Core(TM)2 Duo CPU E8400 @ 3.00GHz.
The SPEC2006 benchmarks were configured to run
within 1 thread in 1 core on 1 chip.

Runtime overhead Table 1 shows the perfor-
mance overhead of FPGate. The average mea-
sured overhead is about 0.4%. Since the overhead
is so minimal and measuring running time is not
100% accurate, in some cases the table shows smal-
l speedups as well. This only means that the the
overhead is comparable to the measurement noise.

Runtime overhead The number of modifica-
tions made by FPGate is shown in table 2. The
columns under #sources and #sinks in the ta-
ble represent the the number of function pointers
modified, the number of import function pointers
modified, if there was a function pointer returned
by GetProcAddr, and the number of indirect cal-
l/jmp instructions overwritten. Taking perbench
as an example, its original file size was 1047 kB
and after rewritten by FPGate, its file size incre-
mented by 39kB, which is less then 4% size over-
head. More specifically, there were 1409 function
pointers which were encoded by FPGate, and each
of which introduced a 16-bytes trampoline stub.
Moreover, 485 indirect call/jmp instructions were
rewritten, each of them introduced about 20 bytes
overhead. Applications hardened by FPGate does-
n’t introduce runtime memory overhead, except for
the statically instrumented sections.

As described earlier, 12 applications were built
and hardened successfully by FPGate, but only 11
of them are listed in these two tables. This is be-
cause there is a special application 999.specrand

8

Table 1: Performance Overhead

Spec2006
Benchmarks

Original (MSVC2010 Release) Hardened by FPGate Performance
OverheadRun Time (s) Run Time (s)

400.perlbench 497 504 1.41%
401.bzip2 565 565 0.00%
403.gcc 407 406 -0.25%
429.mcf 340 339 -0.29%
445.gobmk 554 554 0.00%
456.hmmer 1126 1126 0.00%
458.sjeng 669 671 0.30%
464.h264ref 836 845 1.08%
471.omnetpp 374 379 1.34%
473.astar 418 421 0.72%
483.xalancbmk 288 287 -0.35%

Average 0.36%

Table 2: Modifications made by FPGate to applications

Spec2006
Benchmarks

orig file
size (k)

sources # sinks new file
size (k)

∆file size (k)
#func ptr #imp slot GetProcAddr #indirect inst

400.perlbench 1,047 1409 26 yes 485 1,086 39
401.bzip2 116 102 13 yes 114 128 12
403.gcc 3,038 3530 15 yes 763 3,085 47
429.mcf 80 102 13 yes 96 92 12
445.gobmk 3,218 1996 13 yes 173 3,244 26
456.hmmer 230 146 13 yes 116 246 16
458.sjeng 194 113 13 yes 98 199 5
464.h264ref 575 214 13 yes 456 599 24
471.omnetpp 810 4827 15 yes 1840 926 116
473.astar 117 124 13 yes 100 130 13
483.xalancbmk 3,728 235 13 yes 317 3,750 22

in the SPEC2006 benchmarks, which is not inted-
ed to be used in performance benchmarks, only for
corrrectness tests, so its is not shown here.

4.3 Protection Effects

We have built a demo program to emulate a buffer
overflow vulnerability which allows altering a func-
tion pointer. The function pointer is called later
in this vulnerable program.

The demo program will trigger the calc.exe to be
executed if the program is supplied with our sam-
ple exploit input. After being hardened with FP-
Gate, attacks against this vulnerability are caught
at runtime by directing the execution to our error
handler which terminates the execution.

5 Discussion

5.1 Possible Attacks

FPGate protects all indirect call/jmp transfer in-
structions. It restricts such instructions to jumping
to legal targets, and these targets can be validated
statically after binary rewriting.

Possible attacks against FPGate may come from
three directions:

(a) An attacker may forge a valid target.

(b) An attacker may change pages’ protection at-
tributes to change instructions directly or to

add forged targets.

(c) An attacker may use a dangerous target that
is valid because the program also uses it

For (a) the attacker has to use a page which
is writable and executable at the same time. For
modern programs obeying W⊕X policy, this de-
pends on the attack (b). Otherwise, it can only
generate a DEP exception.

Some API functions are inherently danger-
ous (WinExec), or are dangerous because they
can disable page protections (V irutalProtect,
V irtualAlloc and V irtualAllocEx, V irt∗ for
short). The use of these functions through indi-
rect calls is rare in the case of regular applications,
but FPGate can alert the user if such functions can
get into the set of valid targets; in this case it is
probably best to modify the application.

If a program calls V irt∗ functions directly and
only uses constant flProtect or flNewProtect ar-
guments which doesn’t make the page executable,
it will be immune to such attacks of (a) or (b) af-
ter being hardened by FPGate. If a program calls
V irt∗ functions to make a page executable for JIT,
attackers still have a chance to utilize these func-
tions. We suggest that the program carefully verify
the arguments before calling.

9

5.2 Practical CFI solutions based on
FPGate

DEP and Safe-SEH are mature solutions and pro-
vide solid protections against attack (a)&(c) de-
scribed in section 2.3. But existing mechanisms a-
gainst attack (b) for return address do not provide
full protection. For instance the /GS Buffer Secu-
rity Check protects only against continuous stack
overflows and not against direct overwrites (eg. in
case of a Write-What-Where condition).

FPGate provides a solid solution against attack
(d). Combining it with different existing protec-
tion approaches, we can have different CFI enforce-
ment solutions.

5.2.1 Full CFI enforcement

We can choose strong protection for return ad-
dresses such as implementing a protected shadow
stack, as described in [1]. Thus we can enforce C-
FI solidly. The overhead of our own shadow stack
implementation is about 4.2%, benchmarked using
the SPEC2006 suite.

This will be a very secure protection for software
control-flow integrity. The only way to break it is
to call VirtualProtect to change pages’ attributes.
It is very hard to do so under FPGate, as discussed
in section 5.1.

5.2.2 Quasi CFI enforcement

Shadow stack is not adapted as widely as stack
cookies such as GS or SSP. If we use GS or SSP
to protect return addresses, we implement a quasi-
CFI enforcement. Such a solution provides better
performance than full CFI enforcement. When ap-
plying stack cookies to all functions, their overhead
is from 2.38%(llvm) to 2.77%(gcc), as measured in
our experiments on the SPEC2006 benchmarks.

The weakness of such solutions is that they don’t
protect against direct return address overwrites
and also if an attacker can guess the secret cookie
value by exploiting an information leakage, she can
forge one to circumvent the protection.

5.2.3 CFI enforcement in JIT scenarios

In JIT scenarios, there are two main issues to solve:

� The JIT program will call VirtualProtect or
VirtualAlloc with executable attributes legal-
ly.

� Most JITs don’t respect W⊕X policy for per-
formance reasons.

The first issue is discussed in section 5.1. For the
second issue, software approaches to memory sand-
boxing [4] could be used to prevent most code in

an executable from modifying the executable JIT
code pages. We are interested in investigating this
combination in future work.

6 Conclusion

In this paper, we propose a new approach called
FPGate to ensure that indirect calls and jumps, in-
cluding function pointers jump only to known tar-
gets. It can block various attacks against function
pointers, including most Use-After-Free attacks.

FPGate can be applied through binary rewriting
on executables generated by modern compilers. It-
s runtime overhead is very low (about 0.4% mea-
sured by SPEC2006). FPGate’s techniques can al-
so be used directly in the compilation process to
provide protections for software.

Further, when combined with existing protection
mechanisms, it can be used to enforce CFI, which
provides a solid base for software protection.

References

[1] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson,
and Jay Ligatti. Control-flow integrity princi-
ples, implementations, and applications. ACM
Transactions on Information and System Secu-
rity, 13(1):1–40, October 2009.

[2] John L. Henning. Spec cpu2006 benchmark de-
scriptions. SIGARCH Comput. Archit. News,
34(4):1–17, September 2006.

[3] Lucas Davi, Alexandra Dmitrienko, Manuel
Egele, Thomas Fischer, Thorsten Holz, Ralf
Hund, Stefan Nürnberger, and Ahmad-Reza
Sadeghi. MoCFI: A Framework to Mitigate
Control-Flow Attacks on Smartphones. In
NDSS, 2012.

[4] Bin Zeng, Gang Tan, and Greg Morriset-
t. Combining control-flow integrity and static
analysis for efficient and validated data sand-
boxing. In Proceedings of the 18th ACM confer-
ence on Computer and communications securi-
ty - CCS ’11, page 29, New York, New York,
USA, October 2011. ACM Press.

10

