
Secure Dynamic Code Generation Against Spraying

Wei Tao, Wang Tielei, Duan Lei
Institute of Computer Science and Technology

Peking University
Beijing, 100871

China
{weitao, wangtielei, duanlei}@icst.pku.edu.cn

Luo Jing
Institute of Biophysics

Chinese Academy of Sciences
Beijing, 100101

China
jluo@cogsci.ibp.ac.cn

ABSTRACT
DCG (Dynamic Code Generation) technologies have found
widely applications in the Web 2.0 era, Dion Blazakis recently
presented a Flash JIT-Spraying attack against Adobe Flash Player
that easily circumvented DEP and ASLR protection mechanisms
built in modern operating systems. We have generalized and
extended JIT Spraying into DCG Spraying. Based our analyses on
this abstract model of DCG Spraying, we have found that all
mainstream DCG implementations (Java/ JavaScript/ Flash/ .Net/
SilverLight) are vulnerable against DCG Spraying attack, and
none of the existing ad hoc defenses such as compilation
optimization, random NOP padding and constant splitting
provides effective protection. Furthermore, we propose a new
protection method, INSeRT, which combines randomization of
intrinsic elements of machine instructions and randomly planted
special trapping snippets. INSeRT practically renders the
"sprayed code" ineffective, while alerts the host program of
ongoing attacking attempts. We implemented a prototype of
INSeRT on the V8 JavaScript engine, and the performance
overhead is less than 5%, which should be acceptable in practical
application.

Categories and Subject Descriptors
D.2.0 [Software]: SOFTWARE ENGINEERING – General –
Protection mechanisms.

General Terms
Languages, Security

Keywords
JIT-Spraying, Just-In-Time compilation, INSeRT

CONTENT
In this poster, DCG (Dynamic Code Generation, a.k.a. Runtime
Code Generation) is referring to dynamically compiling external
source code or bytecode into native machine instructions and
adding them to the instruction stream of an executing program [1].
DCG technologies have been used widely in the Web 2.0 era,
AJAX, Flash, Java and .NET have all utilized DCG in one form
or another to boost their performances. DCG is commonly
implemented as JIT (Just-in-time Compilation) [2], it is a hybrid

between dynamic and static compilation, which executes cached
translated native code whenever possible to minimize
performance degradation. Pushed by the ever-growing demand for
web application performance and advancements in compilation
technology, static compilation DCG variants have also emerged.
For example, V8 JavaScript Engine [3][9] increases performance
by compiling JavaScript to native machine code before executing
it.

Under the context of Internet application, DCG often involves
compiling and executing untrusted third-party code thus poses a
serious security threat. Currently, the most critical exploit against
DCG is the JIT Spraying technique revealed by Dion Blazakis at
Black Hat DC 2010 [4]. JIT Spraying is the evolved version of the
traditional Heap Spraying [5]. It exploits the predictability of the
JIT compiler, craftily constructs an x86 instruction flow that can
have totally different semantic meaning when it was executed
with a couple of bytes offset. The JIT sprayed code will provide
essential stepping stones for other network exploits to accomplish
attacks such as drive-by download. DEP (Data Execution
Protection) [6] and ASLR (Address Space Layout Randomization)
[7], the main built-in security mechanisms of modern operating
systems such as Windows 7, are easily bypassed by the JIT
Spraying attackers due to the nature of JIT compilers.

 x ^= 0x3C909090;
 x ^= 0x3C909090;
 x ^= 0x3C909090;

…

…

110E 35 9090903C XOR EAX,3C909090
1113 35 9090903C XOR EAX,3C909090
1118 35 9090903C XOR EAX,3C909090
…

…

110F 90 NOP
1110 90 NOP
1111 90 NOP
1112 3C 35 CMP AL,35
1114 90 NOP
1115 90 NOP
1116 90 NOP
1117 3C 35 CMP AL,35
1119 90 NOP
111A 90 NOP
111B 90 NOP
…

…

Compile

(A) (B)

(C)

Execute with
1 byte offset

Figure 1. JIT-Spraying

Fig.1 shows a JIT spraying example. Source codes in Fig.1A are
converted into instructions in Fig.1B by the Flash JIT compiler.
However, if it is executed from 0x110F, it will be executed as a

Copyright is held by the author/owner(s).
CCS’10, October 4-8, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0244-9/10/10.

sledge (Fig.1C) which in turn provides a stepping stone for drive-
by download attack.

Figure 2. DCG-Spraying Model

Inspired by the groundbreaking work of JIT Spraying, we
proposed the general attacking model of DCG Spraying. We
divide a spray candidate x86 instruction into 3 sections: Header,
Payload and Bolt (Fig.2A). The Header is the first one or more
bytes that will be nullified in execution, either by being jumped
over or by being associated with a previous Bolt into some
irrelevant code. The Payload is all the bytes between the Header
and the Bolt, a chain of Payload spaces is where the shellcode
resides. The Bolt is the last one or more bytes of the original
instruction, they are responsible of transferring the control of
execution flow to the next Payload, and sometimes they
participate in the work of payload. There are 3 kinds of
connecting method to make the transfer: Shrinking connection
(Fig.2B), Jumping connection (Fig.2C) and Pole vault connection
(Fig2D). By investigating our collection of shellcode samples, we
have also surmised that most shellcodes can be successfully run as
a chain of 2-byte payloads. It is true that the JIT Spraying
prototype [4][8] will fail when the DCG host employs
compilation optimization or random NOP padding, however, we
have proved that carefully constructed sprayed code combined
with proper connecting methods will successfully attack all
mainstream DCG implementations. It is a critical and widespread
issue. The target hosts proven vulnerable include Java (GCJ -
4.3.3, HotSpot - JDK 7 build b95), .Net (4.0.30319)/SilverLight
(4.0.50401.0), Adobe Flash (10.1.53.64), JavaScript
(TraceMonkey - Firefox 3.6.3, Squirrelfish Extreme - 2010-06-01
rev 60524, V8 - Chrome 5.0.375.70).

Some DCG implementations are more resilient than others. GCJ
uses compilation optimization which inadvertently randomizes
the target code. In order to counter JIT Spraying, SilverLight uses
random NOP paddings to achieve some degree of randomness,
while V8 deliberately splits 32-bit constants into 2 16-bit words.
But all these measures can be circumvented with DCG Spraying.
Fig.3 illustrates the final result of a DCG Spraying against the V8
engine. Code in red designates the payload, can be replaced with

any shellcode. In this attack, no 32-bit immediate operand was
used.

…

…
067903FF 90 NOP
06790400 90 NOP
06790401 04 00 ADD AL,0
06790403 76 1F JBE SHORT 06790424
…
06790424 90 NOP
06790425 90 NOP
06790426 04 00 ADD AL,0
06790428 76 1F JBE SHORT 06790449
…

…
Figure 3. DCG-Spraying using V8

The versatility of the DCG Spraying urges us to design defensive
measures against Spraying in a more systematically way. We
propose a method named INSeRT (INstruction Space
Randomization & Trapping). This method is fully compatible
with x86 instruction set structure, it randomizes register
assignment, it also randomly transforms all immediate operands,
parameters and local variables. Plus, it randomly injects a number
of specially designed trapping snippets into the target code, which
does not only add extra randomness but also provides an effective
intrusion detection mechanism against exploits. Fig.4 shows an
example of a trapping snippet. It has the following properties:
When executed from the first byte, it will jump and bypass the
whole snippet. But executed from any other byte it will trigger an
INT3 interrupt which in turn will trigger the security auditing
routine deployed in the host program. INSeRT will not only
thwart spraying by deep randomization but also will provide early
alerts to defeat brute-force exploit attempts against randomization.

Figure 4. Trapping Snippet in INSeRT

0

10

20

30

40

50

60

70

80

90

3d

ac
ce
ss

bi
to
ps

co
nt
ol
fl
ow

cr
yp
to

da
te

ma
th

re
ge
xp

st
ri
ng

t
i
m
e
(
m
s
)

original V8

INSeRT V8

Figure 5. INSeRT SunSpider 0.9.1 JavaScript Benchmark

Results
Based on statistical analysis of our shellcode collection, we
optimized the parameters of our INSeRT prototype
implementation, which is based on V8 JavaScript Engine. With a
target code size increase of 5.9%, we effectively reduces exploit
attackers' successful rate down to less than one in a million. While

at the same time, the SunSpider 0.9.1 JavaScript Benchmark
shows that INSeRT only introduces a performance overhead of
less than 5%, shown as Fig.5.

Conclusion: Carefully constructed sprayed code combined with
proper connecting methods will successfully attack all
mainstream DCG implementations, which shows that DCG
Spraying has become a major security threat against dynamic
code generators. While no current defenses provide effective
protection, we propose INSeRT, a general low-cost, robust
counter-measure for all DCG systems. We are currently in the
process of reporting these DCG implementation vulnerabilities to
Microsoft, Google and other companies, and we hope our
research can improve security of all web applications that utilize
the DCG technology in general.

REFERENCES
[1] Keppel, D., Eggers, S.J., and Henry, R.R. 1991. A case for

runtime code generation. Technical Report CSE-91-11-04,
University of Washington.

[2] Aycock, J. 2003. A brief history of just-in-time. ACM
Computing Surveys, 35,2 (2003), 97-113.

[3] Google Inc. 2010. V8 JavaScript Engine.
http://code.google.com/apis/v8/design.html.

[4] Blazakis, D. 2010. Interpreter exploitation: Pointer inference
and jit spraying. In Black Hat DC, USA, 2010.

[5] SkyLined. 2004. Internet Explorer IFRAME src&name
parameter BoF remote compromise.
http://skypher.com/wiki/index.php?title=Www.edup.tudelft.n
l/~bjwever/advisory_iframe.html.php.

[6] Microsoft Inc. 2010. Data Execution Prevention: frequently
asked questions. http://windows.microsoft.com/en-
US/windows-vista/Data-Execution-Prevention-frequently-
asked-questions.

[7] Whitehouse, O. 2007. An Analysis of Address Space Layout
Randomization on Windows Vista.
http://www.symantec.com/avcenter/reference/Address_Spac
e_Layout_Randomization.pdf.

[8] Sintsov, A. 2010. Writing JIT-Spray Shellcode for fun and
profit. Digital Security Research Group.
http://www.dsecrg.com/files/pub/pdf/Writing%20JIT-
Spray%20Shellcode%20for%20fun%20and%20profit.pdf.

[9] Wikipedia. 2010. V8 (JavaScript engine).
http://en.wikipedia.org/wiki/V8_(JavaScript_engine)

