

Page 1 of 8

Structuring 2-way Branches in Binary Executables

Tao Wei, Jian Mao, Wei Zou, Yu Chen

Institute of Computer Science and Technology

Peking University

{weitao, maojian, zouwei, chenyu}@icst.pku.edu.cn

Abstract

One of the major challenges of control flow analysis in

decompilation is to structure 2-way branches into conditionals,

loop conditionals and switches. In this paper, we propose a

graph-based method to formally describe structures of 2-way

branches via the introduction of concepts called "compound

branch subgraph" and “cascade branch subgraph”. We then

present novel structuring algorithms based on such concepts.

Compared with previous works, our algorithms are deterministic

rather than heuristic, and they do not use complicated data

structures such as Interval/DSG. We show that in theory our

algorithm is more accurate and efficient than typical current

approaches; furthermore, we have applied the algorithm to

several real-world binary executables, and experimental results

validate such theoretical analysis.

1 Introduction

Decompilation is a key technology in reverse

engineering area. Decompilation was initially introduced

for porting programs across platforms. It then had been

widely used in areas such as software maintenance and

compilation verification. Since the 1990s, demand on

decompilation from software security analysis community

has been growing very quickly due to outbreaks of

security vulnerabilities and malicious codes.
 [1]

When decompiling a program, it is important to

correctly recover its underlying structures, such as loops,

2-way branches and n-way branches, from its

corresponding binary executable. This paper focuses on

how to structure 2-way branches.

2-way branch is a basic element of control flow

structures in binary executables. The goal of structuring

2-way branches is to organize scattered 2-way branches

into subgraphs, which represent three kinds of high level

control structures—if (conditionals), for, while (loop

conditionals) and switch. Structuring 2-way branches

into conditionals or loop conditionals was first

investigated by C. Cifuentes
[2]

 in 1994; however,

structuring 2-way branches into switches hasn’t been

studied yet.

Unlike those straightforward but inaccurate approaches

employed in previous efforts, we introduce strict

definitions of related control flow structures based on

graph theory, in particular, the definitions of compound

branch subgraph and cascade branch subgraph; we also

propose novel algorithms to structure 2-way branches into

subgraphs according to these definitions mentioned.

Benefiting from these strict definitions, our algorithms

are more accurate than those proposed in previous works.

Furthermore, our algorithms are deterministic rather than

heuristic, and they do not use complicated data structures

such as Interval/DSG
[5][6]

. Hence they are more efficient

than current ones.

The main contributions of this paper are:

1) Introduction of strict definitions of related control

flow structures based on graph theory, in particular,

definitions of compound branch subgraph and cascade

branch subgraph;

Page 2 of 8

2) A novel 2-phase algorithm for structuring 2-way

branches into conditionals and loop conditionals based on

compound branch subgraph;

3) An innovative algorithm for structuring 2-way

branches into switches based on cascade branch

subgraph;

4) Theoretical and empirical evaluations of various

structuring techniques. Both theoretical analysis and

experimental results show that our algorithm is more

accurate and efficient than typical current approaches.

The rest of the paper is organized as follows. Section 2

presents related work. Section 3 provides an overview of

preliminaries of structuring 2-way branches. Section 4

introduces the definitions used in this work. Section 5

presents the algorithm to structure compound branch

subgraph. Section 6 provides the algorithm to structure

cascade branch subgraph. Section 7 shows the theoretic

analysis of our scheme. Section 8 reports our experimental

results and findings. At last, section 9 concludes our work.

2 Related work

Structuring control flow graphs is an important

problem in decompilation. As early as the 1970s Housel,

Baker and Lichtblau et al proposed many algorithms to

structure control flow graphs. However, structuring 2-way

branches into conditionals and loop conditionals was

introduced much later in 1994 by C. Cifuentes in her

famous Ph.D. thesis “Reverse Compilation Techniques”
[2]

,

and structuring 2-way branches into cascade branches

(switch) has not been studied yet.

C. Cifuentes proposed a heuristic structuring algorithm

for conditionals and loop conditionals in her thesis
[2][3]

. E.

Moretti et al proposed an inductive algorithm in 2001
[4]

,

and K. Kaspersky presented a manual method in 2004
[7]

.

The heuristic algorithm proposed by C. Cifuentes is

most well-known. It repeatedly binds together two 2-way

branch nodes based on a matching subgraph showed in

Fig.1, until there are no matched branch nodes left. The

algorithm works well if x and y in Fig.1 are not correlated.

However, if x and y are correlated, the algorithm might

not structure nodes correctly. Fig.2 shows one such

example, in which x is “(a && (b==1))”, y is “(!a &&

(c==2))”. Fig.3 is its control flow graph (CFG), where

“T” represents the True branch edge, and “F” represents

the False branch edge. It is easy to see that the graph

can not be matched by the heuristic subgraph.

The inductive algorithm proposed by E. Moretti et al

uses Interval/DSG
[5][6]

 as the boundary of branches, and

then it adds predecessors of crossover of branches into

branch head nodes. The algorithm handles correlated

cases well, but it can not handle loop conditionals or

binary executables resulting from compiling optimization.

Fig.4 shows one such example: after it is compiled by the

command “gcc –O2”, the CFG of the resulting binary

executable is shown in Fig.5. Branches (diamond nodes in

the figure) belong to one if branch and two switch

branches respectively, but this algorithm will incorrectly

structure all branch nodes into one branch header set.

K. Kaspersky proposed a pure manual method: First,

the follow node is determined by hand, and then nodes in

branch and head are determined. His proposal provided

guidance rather than an algorithm.

x

y

out1 out2

f(x,y)

out1 out2

Figure 1. Heuristic subgraph

int foo(int a, int b, int c)

{

 if((a && (b==1)) ||

 (!a && (c==2)))

 return 1;

 else

 return 0;

}
Figure 2. A program containing correlative nodes

a!=0

b==1 c==2

1 0

T F

T TF
F

Figure 3. CFG of Fig.2

Page 3 of 8

int foo(int a, int b, int *c)

{

if(a == 1) {

(*c)++;

switch(b)

{

case 1:

return 0;

case 2:

return 1;

case 3:

return 2;

default:

return -1;

}

}

else{

(*c)--;

switch(b)

{

case 0:

return 0;

case 1:

return 1;

case 2:

return 2;

default:

return -1;

}

}

}

Figure 4. A program with adjacent conditionals

Figure 5. CFG of Fig.4

3 Preliminaries

This section briefly describes some basic conceptions

in control flow analysis. The detailed descriptions could

be found in [8].

The instructions of a program are organized into basic

blocks, where program flow enters a basic block at its first

instruction and leaves the basic block at its last

instruction.

A control flow graph (CFG) is a connected and directed

graph for describing control flow information of a

program； it is often represented by a triple (N,E,h),

where N is the set of basic blocks of the underlying

program, E is the set of directed edges between these

basic blocks, and h is the entry of the program.

For a basic block b, Succ(b) is the set of successors

of b, and Pred(b) is the set of predecessors of b.

4 Definitions

In this section we first present some basic definitions

used in our method, such as expanded basic block,

expanded CFG, etc. We then state two key definitions of

this paper—compound branch subgraph and cascade

branch subgraph. These definitions together formalize

the structure of 2-way branches.

Definition 1 Predict <=: For two basic block b and c,

if c is the only successor of b, and b is the only

predecessor of c, then it is called b <= c.

Definition 2 Expanded basic block: In a CFG

G=(N,E,h), an expanded basic block

e=<b0,b1,b2,…,bn> satisfies these constraints:

(1) An expanded basic block is made up by basic blocks,

i.e.  i[0,n], biN;

(2) An expanded basic block is continuous, i.e.  i

[0,n), bi<=bi+1;

(3) An expanded basic block is maximum continuous,

i.e. there is no basic block x in G, which satisfies

x<=b0 or bn<=x.

It is obvious that one basic block belongs to one and

only one expanded basic block.

Definition 3: Given an expanded basic block

e=<b0,b1,b2,…,bn>, let Succ(e)={f |  b, f is

the expanded block containing b, and bSucc(bn)}.

Definition 4: Given an expanded basic block

e=<b0,b1,b2,…,bn>, let Pred(e)={f |  b, f is

the expanded block containing b, and bPred(b0)}.

The directed edges between expanded basic blocks are

defined as the successive relationships of them.

Definition 5 Expanded Control Flow Graph: The

expanded control flow graph of a control flow graph

G=(N,E,h) is defined as G’=(N’,E’,h’), where N’

is the set of expanded basic blocks of G, i.e.

N’={e|  b  N, e is the expanded basic block

Page 4 of 8

containing b}; E’ is the set of directed edges between

blocks in N’, E’={<e1,e2>|e1  N’,

e2Succ(e1)}, and h’ is the expanded basic block

containing h.

Definition 6 Predict <<: for two expanded blocks e1,

e2 in an expanded CFG G=(N, E, h), e1 << e2 if there

is a path from e1 to e2.

Definition 7 Branch block: a branch block is an

expanded basic block which has exactly two successors.

For a branch block b, |Succ(b)|=2.

Definition 8 Compound branch subgraph: Compound

branch subgraph T=(N’,E’,h’,t,f) is a subgraph of

an expanded graph G=(N,E,h), which satisfies:

(1) N’ is the set of branch blocks in T, i.e. N’ N;

for nN', |Succ(n)|=2；

(2) E’ is the set of edges in T, i.e. E’={<n1,n2>|

n1N’, n2N’-{t,f}, <n1,n2>E};

(3) h' is the only entry of T, i.e. h’N’; in the graph G,

for  n  N’-{h’}, |Pred(n)|>0,

Pred(n) N’；

(4) t and f is the only two exits of T, i.e. t,f

(N-N’) {h’}, t≠f; in the graph G, for nN’,

Succ(n)  N' {t,f}, and Pred(t)

Pred(f) N’≠ ；

(5) There is no cycle in T.

Because T is acyclic, the restriction of << on nodes in

N’ satisfies the transitive relation.

Compound branch subgraph is the topological

representation of conditionals and loop conditionals. It can

be proved that all compound branch subgraphs can be

translated into conditionals or loop conditionals.

Definition 9 Cascade branch subgraph: Cascade

branch subgraph S=(N’,E’,h’,C) is a subgraph of an

expanded CFG G=(N,E,h), which satisfies:

(1) h' is the only entry of S, h’N’；

(2) N’ is the set of branch blocks in S, which satisfies:

N’ N; for nN', n is an branch block；for n’

N'-{h’}, |Pred(n’)|=1, Pred(n’)  N’,

and n’ is a branch judgment block of h’ i.e. the

only role of n’ is to extend the judgment of h’;

(3) E’ is the set of edges in S, i.e.

E’={<n1,n2>|n1N’, n2N’-C, <n1,n2>E};

(4) C is the set of “case” exit nodes in S, i.e. C

(N-N’) {h’}; in the graph G, for  n N’,

Succ(n)  N' C, and for  c  C,

Pred(c) N’≠；|C|>2;

(5) There is no cycle in S.

Because S is acyclic, the restriction of << on nodes in

N’ satisfies the transitive relation.

Cascade branch subgraph is the topological

representation of switch with small number of case;

Notice that translating cascade 2-way branches into

switch needs data flow analysis to identify branch

judgment blocks, which is beyond the scope of this paper.

5 Algorithm for structuring compound

branch subgraph

Based on definitions given above, the problem of

structuring conditionals and loop conditionals is then

transformed into one of finding compound branch

subgraphs in a flow graph: given an expanded CFG

G=(N,E,h)and a branch block h’, find the entire

compound branch subgraph T=(N’,E’,h’,t,f)

rooted by h’.

We propose a 2-phase algorithm as the following.

5.1 Expansion phase

Step 1: Let N’={h’};

Step 2: For any node ni in G successive to a node in

N’, if ni is a branch block, niN’, and Pred(ni) N’,

add it in N’. Observe that such ni will not introduce new

cycles, and ni is the largest one in N’ according to the

order defined by <<;

Step 3: Repeat step 2, until N’ is not changed any

more.

Fig.7 shows the expansion phase of branch subgraph

provided in Fig. 6. The parts with dashed line identify the

exit nodes.

Page 5 of 8

5.2 Contraction phase

Step 1: Compute the set of exit nodes

O={c|cN’-{h’},  bN’, cSucc(b)};

Step 2: If the number of nodes in O is not exactly TWO,

choose nodes to remove from N’. These nodes should be

largest nodes in the partial order defined by <<;

Step 3: Repeat step 1 and 2 until it stops, i.e. there are

exactly TWO exit nodes left. Let these two nodes as t and

f, and compute E’ according to Def.8(2), and then

T=(N’,E’,h’,t,f) is the solution.

The contraction phase will stop in finite steps, for the

minimum compound branch subgraph has only the node

h’ and its exit nodes are just h’’s two successors.

Fig.8 shows the contraction phase of branch subgraph

provided in Fig. 6.

The pseudo code of this algorithm is shown in Fig.9

and Fig.10.

6 Algorithm for structuring cascade

branch subgraphs

Statement of the Problem: Given a expanded CFG

G=(N,E,h), and a branch block h’, find the entire

cascade branch subgraph S=(N’,E’,h’,C) rooted by

h’.

fin

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

printf(“###”)

T

T

T

T

T

F

F

F

F

F

Figure 6. An example CFG

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

a<=b

a==0

a!=c

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

finprintf(“###”)

(1)

(2)

(3)

Figure 7. Expansion phase

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

finprintf(“###”)

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

(3)

(4)

Figure 8. Contraction phase

Step 1: Let N’={h’};

Step 2: For any node ni in G successive to a node in

N’, add it into N’, provided that ni is a branch judgment

block of h’, ni  N’, Pred(ni)  N’, and

|Pred(ni)|==1. Notice that such ni will not introduce

any new cycle;

Step 3: Repeat step 2, until N’ is not changed any

more. Compute C and E’ according to Def.9;

Step 4: If |C|>2, S=(N’,E’,h’,C) is the solution;

otherwise h’ is not a root node of a cascade branch

subgraph.

Page 6 of 8

The pseudo code of this algorithm is showed in Fig.11.

7 Theoretic analysis

The method suggested by C. Cifuentes is based on

heuristic subgraph matching and node binding. It can be

proven by mathematical induction that all subgraphs

which can be structured by this approach are strictly

compound branch subgraphs. Furthermore, C.

Cifuentes’s method can not detect all compound branch

subgraphs.

The main idea of the proof is briefly described below:

Observing the reverse operation of the approach by C.

Cifuentes, begin from the last one node generated by the

matching and binding process, and repeat splitting these

bond node into their original component nodes reversely

until the original CFG is recovered. At any time in the

process of splitting, the subgraph has only one entry node

and only two exit nodes, and all nodes in it are branch

nodes and accord with the partial order <<, i.e. the

subgraph is one compound branch subgraph. On the other

side, this approach can not detect all compound branch

subgraphs, such as the one shown in Fig.3, which could be

recognized correctly by our algorithm.

Compared with the approach suggested by E.

Moretti[4], compound branch subgraph imposes more

accurate restrictions on the structure of conditionals.

Therefore, our algorithm can recognize loop header

conditionals shown in Fig.13D. In addition, it will never

misrecognize the optimized adjacent conditionals as one

conditional, as is shown in Fig.5.

We now discuss the complexity of our algorithms. 1)

Given an expanded CFG G=(N,E,h), a compound

branch subgraph T=(N’,E’,h’,t,f), the biggest

subgraph T”=(N”,E”,h’) generated at expansion

phase, then the complexity of expansion phase is

O(N”)+O(E”), and the complexity of contraction phase

is O(N”), in sum, the total complexity to structure one

compound branch subgraph is O(N”)+O(E”); 2) Given

an expanded CFG G=(N,E,h), a cascade branch

subgraph S=(N’,E’,h’,C), similar to the expansion

phase above, the complexity to structure one cascade

branch subgraph is O(N’)+O(E’).

// Input：
// h1: header node

// For any Block b, b.in_comp is

// False initially.

// Output：
// N1: set of innder nodes

// O: set of exit nodes

void trav_comp(List& N1, Set& O, Block h1)

{

 // Expansion phase

 N1=[h1];

 h1.in_comp=True

 O={Succ(h1)[0], Succ(h1)[1]};

 List pipe=Succ(h1);

 Dict out_ref={Succ(h1)[0]:1, Succ(h1)[1]:1};

 while(pipe in not null){

 Block b=pipe.pop(0);

 if(b is not a branch block || b.in_comp

 || Pred(b) is not a subset of N1)

 continue;

 N1.append(b);

 b.in_comp=True;

 pipe=pipe+Succ(b);

 O.erase(b);

 add_out(O, out_ref, Succ(b)[0]);

 add_out(O, out_ref, Succ(b)[1]);

 }

 // Contraction phase

 while(len(O)!=2){

 Block b=N1.pop();

 b.in_comp=False;

 O.add(b);

 erase_out(O, out_ref, Succ(b)[0]);

 erase_out(O, out_ref, Succ(b)[1]);

 }

}

Figure 9. Pseudo code of structuring compound branch

subgraphs

void add_out(Set& O, Dict& out_ref, Block b)

{

 if(b in out_ref)

 out_ref[b]=out_ref[b]+1;

 else{

 out_ref.insert(b,1);

 O.add(b);

 }

}

void erase_out(Set& O, Dict& out_ref, Block b)

{

 if(out_ref[b]>1)

 out_ref[x]=out_ref[b]-1;

 else{

 out_ref.erase(b);

 O.erase(b);

 }

}

Figure 10. Assistant pseudo code functions

Page 7 of 8

// Input：
// h1: header node

// For any Block b, b.in_cas is

// False initially.

// Output：
// N1: set of innder nodes

// C: set of “case”exit nodes

// Return:

// True: h1 is a valid header

// False: h1 is not a valid header

bool trav_cas(List& N1, Set& C, Block h1)

{

 if(h1 is not a branch block)

 return False;

 N1=[h1];

 h1.in_cas=True;

 C={Succ(h1)[0], Succ(h1)[1]};

 List pipe=Succ(h1);

 while(pipe in not null){

 Block b=pipe.pop(0);

 if(b is not a branch block ||

 b.in_cas || |Pred(b)|>1 ||

 b is not a branch judgment

 block of h1)

 continue;

 N1.append(b);

 b.in_cas=True;

 pipe=pipe+Succ(b);

 C.erase(b);

 C=C+Succ(b);

 }

 return |C|>2;

}

Figure 11. Pseudo code of structuring cascade branch subgraphs

The approach by C. Cifuentes is a heuristic method,

which need to traverse the CFG unpredictable times to

match and to bind nodes, so the complexity is O(k*N).

The approach by E. Moretti firstly needs to compute

Interval/DSG which is not a trivial work, and the

successive traversal scans the header nodes, branch nodes

and following nodes while our algorithm only needs to

scan header nodes, so the complexity is much higher than

O(N”)+O(E”). In summary, the efficiency of our

algorithm is notably improved than classic algorithms.

8 Experimental results

In what follows, we analyze binary executables from

different operating systems using algorithms demonstrated

above.

The selected instances include: 1). System binary

executables of Windows XP, including kernel32.dll,

user32.dll, explorer.exe; 2) Well-known

applications on Linux, including samba 3.0.23d、

sendmail 8.13.8、 vsftpd 2.0.5, which are

compiled by “gcc –O2”.

Table 1 shows the statistics of compound branch

subgraphs of these instances, e.g. there are 7991

1-inner-node compound branch subgraphs and 1272

2-inner-node compound branch subgraphs in

kernel32.dll.

Fig.12A, 12B, 12C, 12D show the typical structures of

compound branch subgraphs in these instances recognized

by our algorithms. C. Cifuentes’ approach can’t recognize

structures showed in Fig.12B and 12C, and E. Moretti’s

approach can not recognize the structure showed in

Fig.12D. We believe that our algorithms provide a more

accurate and efficient way to structure 2-way branches in

binary executables.

Table 2 shows the statistics of cascade branch

subgraphs of these instances. Fig.13A, 13B show the

typical structures of cascade branch subgraphs in these

instances recognized by our algorithms. We randomly

chose 50 samples from the results, checked them, and

have not found any false recognition; these samples are all

valid switch statements. Such result demonstrates that

our method provides a satisfying solution to this problem.

 instance

inner num of
nodes subgraphs

kernel32 user32 explorer
samba

3.0.23d
sendmail
8.13.8

vsftpd
2.0.5

1 7991 7374 3354 30601 7778 930
2 1272 1195 556 5412 1202 147
3 290 337 156 1485 309 42
4 79 105 47 1743 105 16
5 41 46 25 189 32 1
6 34 27 9 122 22 3
7 11 7 1 61 7 -
8 7 3 4 40 2 -
9 4 4 1 16 3 -

… … … … … … …

Table 1. Statistics of compound branch subgraph size

Figure 12A. Sequence Figure 12B. Cross

Page 8 of 8

 Figure 12C. Hybrid Figure 12D. Loop header

 instance

inner num of
nodes subgraphs

kernel32 user32 explorer
samba
3.0.23d

sendmail
8.13.8

vsftpd
2.0.5

2 272 167 54 468 188 34
3 93 67 21 59 37 3
4 25 25 21 57 31 2
5 33 18 9 32 7 -
6 12 5 4 5 5 1
7 12 12 3 2 1 -
8 4 4 - 3 1 -
9 3 13 1 4 - -

… … … … … … …

Table 2. Statistics of cascade branch subgraph size

Figure 13A. Sequence Figure 13B. Binary

9 Conclusions

This paper proposes a method for structuring 2-way

branches in binary executables to conditionals, loop

conditionals and switches.

Our contribution is based on strict definitions based on

graph theory, in particular, definitions of compound

branch subgraph and cascade branch subgraph.

In this work, a novel 2-phase algorithm is provided for

structuring 2-way branches into conditionals and loop

conditionals based on compound branch subgraph. The

approach can correctly recognize normal, crossover and

loop header structures, and it would not recognize

adjacent optimized conditionals as one conditional. Most

classical works can not achieve all these goals. The

complexity of this approach is notably reduced compared

with previous approaches.

Another innovative algorithm is given to structure

2-way branches into switches based on cascade branch

subgraph. As far as we know, the algorithm is the first

publicized one. It is concise and fast, and no

false-identification has been found in its results.

We have applied these algorithms to typical binary

executables on Windows XP and Linux. The statistics of

2-way branch structures in these instances are given.

Experiment results validate our theoretical analysis. It is

shown that the methods can handle every situation

correctly, and they are more accurate than typical current

approaches.

References

[1] http://www.program-transformation.org/Transform

/HistoryOfDecompilation1.

[2] C. Cifuentes. Reverse compilation techniques.

PhD Thesis, Queensland University of Technology,

July 1994.

[3] C. Cifuentes. Structuring decompiled graphs.

International Conference on Compiler

Construction, Lecture Notes in Computer Science

1060, pages 91-105, 24-26 April 1996.

[4] Eric Moretti, Gilles Chanteperdrix, Angel Osorio,

"New Algorithms for Control-Flow Graph

Structuring," csmr, p. 184, Fifth European

Conference on Software Maintenance and

Reengineering, 2001.

[5] F.E. Allen. Control flow analysis. SIGPLAN

Notices, 5(7)1:19, July 1970.

[6] J. Cocke. Global common subexpression

elimination. SIGPLAN Notices, 5(7):20-25, July

1970.

[7] K. Kaspersky, Hacker Disassembling Uncovered,

A-List LLC, P384, 2004.

[8] Steven S. Muchnick, Advanced Compiler Design

and Implementation, Elsevier Science (USA),

2005.

http://www.program-transformation.org/Transform/HistoryOfDecompilation1
http://www.program-transformation.org/Transform/HistoryOfDecompilation1

