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Abstract 

One of the major challenges of control flow analysis in 

decompilation is to structure 2-way branches into conditionals, 

loop conditionals and switches. In this paper, we propose a 

graph-based method to formally describe structures of 2-way 

branches via the introduction of concepts called "compound 

branch subgraph" and “cascade branch subgraph”. We then 

present novel structuring algorithms based on such concepts. 

Compared with previous works, our algorithms are deterministic 

rather than heuristic, and they do not use complicated data 

structures such as Interval/DSG. We show that in theory our 

algorithm is more accurate and efficient than typical current 

approaches; furthermore, we have applied the algorithm to 

several real-world binary executables, and experimental results 

validate such theoretical analysis. 

 

 

1 Introduction 

 

Decompilation is a key technology in reverse 

engineering area. Decompilation was initially introduced 

for porting programs across platforms. It then had been 

widely used in areas such as software maintenance and 

compilation verification. Since the 1990s, demand on 

decompilation from software security analysis community 

has been growing very quickly due to outbreaks of 

security vulnerabilities and malicious codes.
 [1]

 

When decompiling a program, it is important to 

correctly recover its underlying structures, such as loops, 

2-way branches and n-way branches, from its 

corresponding binary executable. This paper focuses on 

how to structure 2-way branches. 

2-way branch is a basic element of control flow 

structures in binary executables. The goal of structuring 

2-way branches is to organize scattered 2-way branches 

into subgraphs, which represent three kinds of high level 

control structures—if (conditionals), for, while (loop 

conditionals) and switch. Structuring 2-way branches 

into conditionals or loop conditionals was first 

investigated by C. Cifuentes
[2]

 in 1994; however,  

structuring 2-way branches into switches hasn’t been 

studied yet. 

Unlike those straightforward but inaccurate approaches 

employed in previous efforts, we introduce strict 

definitions of related control flow structures based on 

graph theory, in particular, the definitions of compound 

branch subgraph and cascade branch subgraph; we also 

propose novel algorithms to structure 2-way branches into 

subgraphs according to these definitions mentioned. 

Benefiting from these strict definitions, our algorithms 

are more accurate than those proposed in previous works. 

Furthermore, our algorithms are deterministic rather than 

heuristic, and they do not use complicated data structures 

such as Interval/DSG
[5][6]

. Hence they are more efficient 

than current ones. 

The main contributions of this paper are: 

1) Introduction of strict definitions of related control 

flow structures based on graph theory, in particular, 

definitions of compound branch subgraph and cascade 

branch subgraph; 
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2) A novel 2-phase algorithm for structuring 2-way 

branches into conditionals and loop conditionals based on 

compound branch subgraph; 

3) An innovative algorithm for structuring 2-way 

branches into switches based on cascade branch 

subgraph; 

4) Theoretical and empirical evaluations of various 

structuring techniques. Both theoretical analysis and 

experimental results show that our algorithm is more 

accurate and efficient than typical current approaches. 

The rest of the paper is organized as follows. Section 2 

presents related work. Section 3 provides an overview of 

preliminaries of structuring 2-way branches. Section 4 

introduces the definitions used in this work. Section 5 

presents the algorithm to structure compound branch 

subgraph. Section 6 provides the algorithm to structure 

cascade branch subgraph. Section 7 shows the theoretic 

analysis of our scheme. Section 8 reports our experimental 

results and findings. At last, section 9 concludes our work. 

 

2 Related work 

 

Structuring control flow graphs is an important 

problem in decompilation. As early as the 1970s Housel, 

Baker and Lichtblau et al proposed many algorithms to 

structure control flow graphs. However, structuring 2-way 

branches into conditionals and loop conditionals was 

introduced much later in 1994 by C. Cifuentes in her 

famous Ph.D. thesis “Reverse Compilation Techniques”
[2]

, 

and structuring 2-way branches into cascade branches 

(switch) has not been studied yet. 

C. Cifuentes proposed a heuristic structuring algorithm 

for conditionals and loop conditionals in her thesis
[2][3]

. E. 

Moretti et al proposed an inductive algorithm in 2001
[4]

, 

and K. Kaspersky presented a manual method in 2004
[7]

. 

The heuristic algorithm proposed by C. Cifuentes is 

most well-known. It repeatedly binds together two 2-way 

branch nodes based on a matching subgraph showed in 

Fig.1, until there are no matched branch nodes left. The 

algorithm works well if x and y in Fig.1 are not correlated. 

However, if x and y are correlated, the algorithm might 

not structure nodes correctly. Fig.2 shows one such 

example, in which x is “(a && (b==1))”, y is “(!a && 

(c==2))”. Fig.3 is its control flow graph (CFG), where 

“T” represents the True branch edge, and “F” represents 

the False branch edge. It is easy to see that the graph 

can not be matched by the heuristic subgraph. 

The inductive algorithm proposed by E. Moretti et al 

uses Interval/DSG
[5][6]

 as the boundary of branches, and 

then it adds predecessors of crossover of branches into 

branch head nodes. The algorithm handles correlated 

cases well, but it can not handle loop conditionals or 

binary executables resulting from compiling optimization. 

Fig.4 shows one such example: after it is compiled by the 

command “gcc –O2”, the CFG of the resulting binary 

executable is shown in Fig.5. Branches (diamond nodes in 

the figure) belong to one if branch and two switch 

branches respectively, but this algorithm will incorrectly 

structure all branch nodes into one branch header set. 

K. Kaspersky proposed a pure manual method: First, 

the follow node is determined by hand, and then nodes in 

branch and head are determined. His proposal provided 

guidance rather than an algorithm. 

 

x

y

out1 out2

f(x,y)

out1 out2

 

Figure 1. Heuristic subgraph 

int foo(int a, int b, int c)

{

   if( (a && (b==1)) || 

       (!a && (c==2)) )

      return 1;

   else

      return 0;

}  
Figure 2. A program containing correlative nodes 

a!=0

b==1 c==2

1 0

T F

T TF
F

 

Figure 3. CFG of Fig.2 
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int foo(int a, int b, int *c)

{

if( a == 1 ) {

(*c)++;

switch(b)

{

case 1:

return 0;

case 2:

return 1;

case 3:

return 2;

default:

return -1;

}

}

else{

(*c)--;

switch(b)

{

case 0:

return 0;

case 1:

return 1;

case 2:

return 2;

default:

return -1;

}

}

}  

Figure 4. A program with adjacent conditionals 

 

Figure 5. CFG of Fig.4 

 

3 Preliminaries 

 

This section briefly describes some basic conceptions 

in control flow analysis. The detailed descriptions could 

be found in [8]. 

The instructions of a program are organized into basic 

blocks, where program flow enters a basic block at its first 

instruction and leaves the basic block at its last 

instruction. 

A control flow graph (CFG) is a connected and directed 

graph for describing control flow information of a 

program； it is often represented by a triple (N,E,h), 

where N is the set of basic blocks of the underlying 

program, E is the set of directed edges between these 

basic blocks, and h is the entry of the program. 

For a basic block b, Succ(b) is the set of successors 

of b, and Pred(b) is the set of predecessors of b. 

 

4 Definitions 

 

In this section we first present some basic definitions 

used in our method, such as expanded basic block, 

expanded CFG, etc. We then state two key definitions of 

this paper—compound branch subgraph and cascade 

branch subgraph. These definitions together formalize 

the structure of 2-way branches. 

Definition 1 Predict <=: For two basic block b and c, 

if c is the only successor of b, and b is the only 

predecessor of c, then it is called b <= c. 

Definition 2 Expanded basic block: In a CFG 

G=(N,E,h), an expanded basic block 

e=<b0,b1,b2,…,bn> satisfies these constraints: 

(1) An expanded basic block is made up by basic blocks, 

i.e.  i[0,n], biN; 

(2) An expanded basic block is continuous, i.e.  i 

[0,n), bi<=bi+1; 

(3) An expanded basic block is maximum continuous, 

i.e. there is no basic block x in G, which satisfies 

x<=b0 or bn<=x. 

It is obvious that one basic block belongs to one and 

only one expanded basic block. 

Definition 3: Given an expanded basic block 

e=<b0,b1,b2,…,bn>, let Succ(e)={f |  b, f is 

the expanded block containing b, and bSucc(bn)}. 

Definition 4: Given an expanded basic block 

e=<b0,b1,b2,…,bn>, let Pred(e)={f |  b, f is 

the expanded block containing b, and bPred(b0)}. 

The directed edges between expanded basic blocks are 

defined as the successive relationships of them. 

Definition 5 Expanded Control Flow Graph: The 

expanded control flow graph of a control flow graph 

G=(N,E,h) is defined as G’=(N’,E’,h’), where N’ 

is the set of expanded basic blocks of G, i.e. 

N’={e|  b  N, e is the expanded basic block 
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containing b}; E’ is the set of directed edges between 

blocks in N’, E’={<e1,e2>|e1  N’, 

e2Succ(e1)}, and h’ is the expanded basic block 

containing h. 

Definition 6 Predict <<: for two expanded blocks e1, 

e2 in an expanded CFG G=(N, E, h), e1 << e2 if there 

is a path from e1 to e2. 

Definition 7 Branch block: a branch block is an 

expanded basic block which has exactly two successors. 

For a branch block b, |Succ(b)|=2. 

Definition 8 Compound branch subgraph: Compound 

branch subgraph T=(N’,E’,h’,t,f) is a subgraph of 

an expanded graph G=(N,E,h), which satisfies: 

(1) N’ is the set of branch blocks in T, i.e. N’ N; 

for nN', |Succ(n)|=2； 

(2) E’ is the set of edges in T, i.e. E’={<n1,n2>| 

n1N’, n2N’-{t,f}, <n1,n2>E}; 

(3) h' is the only entry of T, i.e. h’N’; in the graph G, 

for  n  N’-{h’}, |Pred(n)|>0, 

Pred(n) N’； 

(4) t and f is the only two exits of T, i.e. t,f 

(N-N’) {h’}, t≠f; in the graph G, for nN’, 

Succ(n)  N' {t,f}, and Pred(t) 

Pred(f)  N’≠ ； 

(5) There is no cycle in T. 

Because T is acyclic, the restriction of << on nodes in 

N’ satisfies the transitive relation. 

Compound branch subgraph is the topological 

representation of conditionals and loop conditionals. It can 

be proved that all compound branch subgraphs can be 

translated into conditionals or loop conditionals. 

Definition 9 Cascade branch subgraph: Cascade 

branch subgraph S=(N’,E’,h’,C) is a subgraph of an 

expanded CFG G=(N,E,h), which satisfies: 

(1) h' is the only entry of S, h’N’； 

(2) N’ is the set of branch blocks in S, which satisfies: 

N’ N; for nN', n is an branch block；for n’ 

N'-{h’}, |Pred(n’)|=1, Pred(n’)  N’, 

and n’ is a branch judgment block of h’ i.e. the 

only role of n’ is to extend the judgment of h’; 

(3) E’ is the set of edges in S, i.e. 

E’={<n1,n2>|n1N’, n2N’-C, <n1,n2>E}; 

(4) C is the set of “case” exit nodes in S, i.e. C  

(N-N’) {h’}; in the graph G, for  n N’, 

Succ(n)  N' C, and for  c  C, 

Pred(c) N’≠；|C|>2; 

(5) There is no cycle in S. 

Because S is acyclic, the restriction of << on nodes in 

N’ satisfies the transitive relation. 

Cascade branch subgraph is the topological 

representation of switch with small number of case; 

Notice that translating cascade 2-way branches into 

switch needs data flow analysis to identify branch 

judgment blocks, which is beyond the scope of this paper. 

 

5 Algorithm for structuring compound 

branch subgraph 

 

Based on definitions given above, the problem of 

structuring conditionals and loop conditionals is then 

transformed into one of finding compound branch 

subgraphs in a flow graph: given an expanded CFG 

G=(N,E,h)and a branch block h’, find the entire 

compound branch subgraph T=(N’,E’,h’,t,f) 

rooted by h’. 

We propose a 2-phase algorithm as the following. 

 

5.1 Expansion phase 

 

Step 1: Let N’={h’}; 

Step 2: For any node ni in G successive to a node in 

N’, if ni is a branch block, niN’, and Pred(ni) N’, 

add it in N’. Observe that such ni will not introduce new 

cycles, and ni is the largest one in N’ according to the 

order defined by <<; 

Step 3: Repeat step 2, until N’ is not changed any 

more. 

Fig.7 shows the expansion phase of branch subgraph 

provided in Fig. 6. The parts with dashed line identify the 

exit nodes. 
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5.2 Contraction phase 

 

Step 1: Compute the set of exit nodes 

O={c|cN’-{h’},  bN’, cSucc(b)}; 

Step 2: If the number of nodes in O is not exactly TWO, 

choose nodes to remove from N’. These nodes should be 

largest nodes in the partial order defined by <<; 

Step 3: Repeat step 1 and 2 until it stops, i.e. there are 

exactly TWO exit nodes left. Let these two nodes as t and 

f, and compute E’ according to Def.8(2), and then 

T=(N’,E’,h’,t,f) is the solution. 

The contraction phase will stop in finite steps, for the 

minimum compound branch subgraph has only the node 

h’ and its exit nodes are just h’’s two successors. 

Fig.8 shows the contraction phase of branch subgraph 

provided in Fig. 6. 

The pseudo code of this algorithm is shown in Fig.9 

and Fig.10. 

 

6 Algorithm for structuring cascade 

branch subgraphs 

 

Statement of the Problem: Given a expanded CFG 

G=(N,E,h), and a branch block h’, find the entire 

cascade branch subgraph S=(N’,E’,h’,C) rooted by 

h’. 

 

fin

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

printf(“###”)

T

T

T

T

T

F

F

F

F

F

 

Figure 6. An example CFG 

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

a<=b

a==0

a!=c

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

finprintf(“###”)

(1)

(2)

(3)  

Figure 7. Expansion phase 

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

finprintf(“###”)

a<=b

a==0

a!=c

c==0

c!=d

printf(“OK”)

(3)

(4)

 

Figure 8. Contraction phase 

Step 1: Let N’={h’}; 

Step 2: For any node ni in G successive to a node in 

N’, add it into N’, provided that ni is a branch judgment 

block of h’, ni  N’, Pred(ni)  N’, and 

|Pred(ni)|==1. Notice that such ni will not introduce 

any new cycle; 

Step 3: Repeat step 2, until N’ is not changed any 

more. Compute C and E’ according to Def.9; 

Step 4: If |C|>2, S=(N’,E’,h’,C) is the solution; 

otherwise h’ is not a root node of a cascade branch 

subgraph. 
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The pseudo code of this algorithm is showed in Fig.11. 

 

7 Theoretic analysis 

 

The method suggested by C. Cifuentes is based on 

heuristic subgraph matching and node binding. It can be 

proven by mathematical induction that all subgraphs 

which can be structured by this approach are strictly 

compound branch subgraphs. Furthermore, C. 

Cifuentes’s method can not detect all compound branch 

subgraphs. 

The main idea of the proof is briefly described below: 

Observing the reverse operation of the approach by C. 

Cifuentes, begin from the last one node generated by the 

matching and binding process, and repeat splitting these 

bond node into their original component nodes reversely 

until the original CFG is recovered. At any time in the 

process of splitting, the subgraph has only one entry node 

and only two exit nodes, and all nodes in it are branch 

nodes and accord with the partial order <<, i.e. the 

subgraph is one compound branch subgraph. On the other 

side, this approach can not detect all compound branch 

subgraphs, such as the one shown in Fig.3, which could be 

recognized correctly by our algorithm. 

Compared with the approach suggested by E. 

Moretti[4], compound branch subgraph imposes more 

accurate restrictions on the structure of conditionals. 

Therefore, our algorithm can recognize loop header 

conditionals shown in Fig.13D. In addition, it will never 

misrecognize the optimized adjacent conditionals as one 

conditional, as is shown in Fig.5. 

We now discuss the complexity of our algorithms. 1) 

Given an expanded CFG G=(N,E,h), a compound 

branch subgraph T=(N’,E’,h’,t,f), the biggest 

subgraph T”=(N”,E”,h’) generated at expansion 

phase, then the complexity of expansion phase is 

O(N”)+O(E”), and the complexity of contraction phase 

is O(N”), in sum, the total complexity to structure one 

compound branch subgraph is O(N”)+O(E”); 2) Given 

an expanded CFG G=(N,E,h), a cascade branch 

subgraph S=(N’,E’,h’,C), similar to the expansion 

phase above, the complexity to structure one cascade 

branch subgraph is O(N’)+O(E’). 

 

// Input：
//    h1: header node

//    For any Block b, b.in_comp is 

//      False initially.

// Output：
//    N1: set of innder nodes

//    O: set of exit nodes

void trav_comp(List& N1, Set& O, Block h1)

{    

    // Expansion phase

    N1=[h1];

    h1.in_comp=True

    O={Succ(h1)[0], Succ(h1)[1]};

    List pipe=Succ(h1);

    Dict out_ref={Succ(h1)[0]:1, Succ(h1)[1]:1};

    while(pipe in not null){

        Block b=pipe.pop(0);

        if(b is not a branch block || b.in_comp

           || Pred(b) is not a subset of N1)

            continue;

        N1.append(b);

        b.in_comp=True;

        pipe=pipe+Succ(b);

        O.erase(b);

        add_out(O, out_ref, Succ(b)[0]);

        add_out(O, out_ref, Succ(b)[1]);

    }

    // Contraction phase

    while(len(O)!=2){

        Block b=N1.pop();

        b.in_comp=False;

        O.add(b);

        erase_out(O, out_ref, Succ(b)[0]);

        erase_out(O, out_ref, Succ(b)[1]);

    }

}  

Figure 9. Pseudo code of structuring compound branch 

subgraphs 

 

void add_out(Set& O, Dict& out_ref, Block b)

{

    if(b in out_ref)

        out_ref[b]=out_ref[b]+1;

    else{

        out_ref.insert(b,1);

        O.add(b);

    }

}

void erase_out(Set& O, Dict& out_ref, Block b)

{

    if(out_ref[b]>1)

        out_ref[x]=out_ref[b]-1;

    else{

        out_ref.erase(b);

        O.erase(b);

    }

}
 

Figure 10. Assistant pseudo code functions 
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// Input：
//    h1: header node

//    For any Block b, b.in_cas is 

//      False initially.

// Output：
//    N1: set of innder nodes

//    C: set of “case”exit nodes

// Return:

//    True: h1 is a valid header

//    False: h1 is not a valid header

bool trav_cas(List& N1, Set& C, Block h1)

{

    if(h1 is not a branch block)

       return False;

    N1=[h1];

    h1.in_cas=True;

    C={Succ(h1)[0], Succ(h1)[1]};

    List pipe=Succ(h1);

    while(pipe in not null){

        Block b=pipe.pop(0);

        if(b is not a branch block ||

           b.in_cas || |Pred(b)|>1 ||

           b is not a branch judgment

             block of h1)

            continue;

        N1.append(b);

        b.in_cas=True;

        pipe=pipe+Succ(b);

        C.erase(b);

        C=C+Succ(b);

    }

    return |C|>2;

}  

Figure 11. Pseudo code of structuring cascade branch subgraphs 

The approach by C. Cifuentes is a heuristic method, 

which need to traverse the CFG unpredictable times to 

match and to bind nodes, so the complexity is O(k*N). 

The approach by E. Moretti firstly needs to compute 

Interval/DSG which is not a trivial work, and the 

successive traversal scans the header nodes, branch nodes 

and following nodes while our algorithm only needs to 

scan header nodes, so the complexity is much higher than 

O(N”)+O(E”). In summary, the efficiency of our 

algorithm is notably improved than classic algorithms. 

 

8 Experimental results 

 

In what follows, we analyze binary executables from 

different operating systems using algorithms demonstrated 

above.  

The selected instances include: 1). System binary 

executables of Windows XP, including kernel32.dll, 

user32.dll, explorer.exe; 2) Well-known 

applications on Linux, including samba 3.0.23d、

sendmail 8.13.8、 vsftpd 2.0.5, which are 

compiled by “gcc –O2”. 

Table 1 shows the statistics of compound branch 

subgraphs of these instances, e.g. there are 7991 

1-inner-node compound branch subgraphs and 1272 

2-inner-node compound branch subgraphs in 

kernel32.dll. 

Fig.12A, 12B, 12C, 12D show the typical structures of 

compound branch subgraphs in these instances recognized 

by our algorithms. C. Cifuentes’ approach can’t recognize 

structures showed in Fig.12B and 12C, and E. Moretti’s 

approach can not recognize the structure showed in 

Fig.12D. We believe that our algorithms provide a more 

accurate and efficient way to structure 2-way branches in 

binary executables. 

Table 2 shows the statistics of cascade branch 

subgraphs of these instances. Fig.13A, 13B show the 

typical structures of cascade branch subgraphs in these 

instances recognized by our algorithms. We randomly 

chose 50 samples from the results, checked them, and 

have not found any false recognition; these samples are all 

valid switch statements. Such result demonstrates that 

our method provides a satisfying solution to this problem. 

         instance

inner  num of
nodes   subgraphs

kernel32 user32 explorer
samba

3.0.23d
sendmail
8.13.8

vsftpd
2.0.5

1 7991 7374 3354 30601 7778 930
2 1272 1195 556 5412 1202 147
3 290 337 156 1485 309 42
4 79 105 47 1743 105 16
5 41 46 25 189 32 1
6 34 27 9 122 22 3
7 11 7 1 61 7 -
8 7 3 4 40 2 -
9 4 4 1 16 3 -

… … … … … … …  

Table 1. Statistics of compound branch subgraph size 

       

Figure 12A. Sequence     Figure 12B. Cross 
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    Figure 12C. Hybrid    Figure 12D. Loop header 

         instance

inner  num of
nodes   subgraphs

kernel32 user32 explorer
samba
3.0.23d

sendmail
8.13.8

vsftpd
2.0.5

2 272 167 54 468 188 34
3 93 67 21 59 37 3
4 25 25 21 57 31 2
5 33 18 9 32 7 -
6 12 5 4 5 5 1
7 12 12 3 2 1 -
8 4 4 - 3 1 -
9 3 13 1 4 - -

… … … … … … …  

Table 2. Statistics of cascade branch subgraph size 

      

Figure 13A. Sequence         Figure 13B. Binary 

 

9 Conclusions 

 

This paper proposes a method for structuring 2-way 

branches in binary executables to conditionals, loop 

conditionals and switches. 

Our contribution is based on strict definitions based on 

graph theory, in particular, definitions of compound 

branch subgraph and cascade branch subgraph. 

In this work, a novel 2-phase algorithm is provided for 

structuring 2-way branches into conditionals and loop 

conditionals based on compound branch subgraph. The 

approach can correctly recognize normal, crossover and 

loop header structures, and it would not recognize 

adjacent optimized conditionals as one conditional. Most 

classical works can not achieve all these goals. The 

complexity of this approach is notably reduced compared 

with previous approaches. 

Another innovative algorithm is given to structure 

2-way branches into switches based on cascade branch 

subgraph. As far as we know, the algorithm is the first 

publicized one. It is concise and fast, and no 

false-identification has been found in its results. 

We have applied these algorithms to typical binary 

executables on Windows XP and Linux. The statistics of 

2-way branch structures in these instances are given. 

Experiment results validate our theoretical analysis. It is 

shown that the methods can handle every situation 

correctly, and they are more accurate than typical current 

approaches. 
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